º¬Ðß²ÝÊÓƵ
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
º¬Ðß²ÝÊÓƵ

Programme Specifications

Programme Specification

MEng (Hons) Electronic and Electrical Engineering (Students undertaking Part D in 2019)

Academic Year: 2019/20

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution º¬Ðß²ÝÊÓƵ
Teaching institution (if different)
Owning school/department Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Details of accreditation by a professional/statutory body

Institution of Engineering and Technology (IET)
Institute of Measurement and Control (InstMC)
Energy Institute (EI)

See also further details in 'Programme Structure' below.

 

Final award MEng/ MEng+DIS / MEng+DIntS
Programme title Electronic and Electrical Engineering
Programme code WSUM10
Length of programme The duration of the programme is 8 semesters or 10 semesters if taken with either the Diploma in Industrial Studies (DIS) or the Diploma in International Studies (DIntS). The programme is only available on a full-time basis.
UCAS code H601, H605
Admissions criteria

http://www.lboro.ac.uk/study/undergraduate/courses/electronic-electrical-engineering/

Date at which the programme specification was published Mon, 12 Aug 2019 15:37:44 BST

1. Programme Aims

To meet the aims of the BEng programme in Electronic and Electrical Engineering and to further enhance a student’s learning experience by providing a high quality educational experience, for well motivated high achievers, that:

  • A1.   increases the depth and breadth of technical study to the level expected of Masters level graduates;
  • A2.   develops knowledge and skills, to a depth and breadth expected of Masters level graduates, as a preparation for a career in the electronic and electrical engineering industry;
  • A3.   develops an enhanced capacity for independent learning, planning and self–reliance;
  • A4.   enhances teamwork and leadership skills, equipping graduates of the programme to play leading roles in industry and potentially take responsibility for future innovation and change.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

UK Standard for Professional Engineering Competence; Engineering Technician, Incorporated Engineer and Chartered Engineer Standard, Engineering Council UK, 3rd edition, 2013.

UK Standard for Professional Engineering Competence; The Accreditation of Higher Education Programmes, Engineering Council UK, 3rd edition, 2014.

Guidance Note on Academic Accreditation, Engineering Council UK, 2014.

The UK Quality Code for Higher Education. The Quality Assurance Agency for Higher Education, April 2012.

Subject Benchmark Statement: Engineering, The Quality Assurance Agency for Higher Education, November 2010.

 

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate a knowledge and understanding of:

  • K1.   mathematical methods appropriate to electronic and electrical engineering and related disciplines, including their limitations and range of applicability
  • K2.   principles of engineering and/or systems science appropriate to electronic and electrical engineering and related disciplines, including their range of applicability;
  • K3.   principles of Information Technology and Communications appropriate to electronic and electrical engineering and related disciplines;
  • K4.   design principles and techniques appropriate to relevant components, equipment and associated software;
  • K5.   characteristics of relevant engineering materials and components;
  • K6.   management and business practices appropriate to engineering industries, their application and limitations;
  • K7.   codes of practice and regulatory frameworks relevant to electronic and electrical engineering and related disciplines;
  • K8.   operational practices and requirements for safe operation relevant to electronic and electrical engineering and related disciplines;
  • K9.   the professional and ethical responsibilities of engineers;
  • K10.  team roles, team-working skills and leadership skills;
  • K11.  relevant research methods.

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to demonstrate:

  • C1.   an understanding of standard mathematical and/or computer based methods for modelling and analysing a range of practical and hypothetical engineering problems, and the essential principles of modelling and analysing routine engineering systems, processes, components and products;
  • C2.   an ability to develop innovative solutions to practical engineering problems;
  • C3.   a competence in defining and solving practical engineering problems;
  • C4.   the ability to apply systems processes in a range of different engineering contexts.
b. Subject-specific practical skills:

On successful completion of this programme, students should be able to:

  • P1.   use appropriate or novel mathematical methods for modelling and analysing pertinent engineering problems;
  • P2.   select and use relevant test and measurement equipment;
  • P3.   plan and execute safely novel or unfamiliar experimental laboratory work;
  • P4.   select and use computational tools and packages (including programming languages where appropriate);
  • P5.   design, and where appropriate construct, new systems, components or processes;
  • P6.   undertake testing of design ideas in the laboratory or by simulation, and analyse and critically evaluate the results;
  • P7.   search for, retrieve and evaluate information, ideas and data from a variety of sources;
  • P8.   manage a project and produce technical reports, papers, diagrams and drawings at an appropriate level.
c. Key transferable skills:

On successful completion of this programme, students should be able to:

  • T1.   manipulate, sort and present data in a range of forms;
  • T2.   use evidence based methods in the solution of complex problems;
  • T3.   work with limited, incomplete and/or contradictory information in the solution of unfamiliar problems;
  • T4.   use an engineering and/or systems approach to the solution of problems in unfamiliar situations;
  • T5.   be creative and innovative in problem solving;
  • T6.   work effectively as part of a team and show potential for leadership;
  • T7.   use a wide range of information and communications technology;
  • T8.   manage time and resources;
  • T9.   use appropriate management tools;
  • T10.  communicate effectively orally, visually and in writing at an appropriate level;
  • T11.  learn effectively, continuously and independently in a variety of environments.

4. Programme structure

These Programme Specifications apply to the conduct of the programme in the 2017-18 session and should not be construed as being relevant to any other session.  These Programme Specifications may be subject to change from time to time.  Notice of change will be given by the School responsible for the programme.

In the following tables, ‘c’ indicates a compulsory module and ‘o’ indicates an optional module. The optional modules ‘oA’, ‘oB’ ‘oC’ and 'oD' should be considered along with the text following the table they appear in.  

Modules indicated as being taught in both Semester 1 and Semester 2 have elements of assessment in each semester however examinations for these modules normally occur during the Semester 2 examination period. Modules indicated as being taught in a single semester are assessed entirely within that semester. 

 

4.1       Part A - Introductory Modules

Code Title Weight Semester C/O
ELA005 Electromagnetism A 10 1+2 C
ELA004 Signals and Systems 10 1+2 C
ELA007 Introduction to Systems Engineering for Projects 20 1+2 C
MAA303 Mathematics A 20 1+2 C
ELA001 Circuits 20 1+2 C
ELA003 Electronics A 20 1+2 C
ELA010 Programming and Software Design 20 1+2 C

The 20 credit module ELA001 Circuits is taught over both semesters, 2/3 of the module is taught in Semester 1 and 1/3 in Semester 2.

 

4.2       Part B - Degree Modules

Code Title Weight Semester C/O
ELB002 Communications 15 1+2 C
ELB003 Electromechanical Systems 15 1+2 C
ELB004 Control System Design 15 1+2 C
ELB010 Electronics B 20 1+2 C
ELB013 Engineering Project Management 20 1+2 C
MAB303 Mathematics B 20 1+2 C
ELB012 Renewable Energy Systems Analysis 15 1+2 O
ELB014 Software Engineering 15 1+2 O
ELB019 Computer Architecture 15 1+2 O
MMB140 Mechanics 15 1+2 O

Students should take one of the optional (o) modules indicated. 

 

4.3       Part C - Degree Modules

Code Title Weight Semester C/O
ELC008 Business Management 15 1+2 C
ELD002 Group Project 30 1+2 C
ELB014 Software Engineering 15 1+2 OA
ELB019 Computer Architecture 15 1+2 OA
MMB140 Mechanics 15 1+2 OA
ELC002 Principles of Digital Communications 15 1+2 OB
ELC003 Renewable Energy Sources 15 1+2 OB
ELC004 Computer Networks 15 1+2 OB
ELC006 Fast Transient 15 1+2 OB
ELC007 Electromagnetism C 15 1+2 OB
ELC012 Systems Engineering Applications Theory 15 1+2 OB
ELC013 Electromagnetic Compatibility 15 1+2 OB
ELC014 Biophotonics Engineering 15 1+2 OB
ELC018 Real-Time Software Engineering 15 1+2 OB
ELC022 Power Electronics for Renewables 15 1+2 OB
ELC030 Bioelectricity - Fundamentals and Applications 15 1+2 OB
ELC039 Microwave Communication Systems 15 1+2 OB
ELC041 Digital and State Space Control 15 1+2 OB
ELC054 Electronic System Design with FPGA's 15 1+2 OB
ELC055 Digital Interfacing and Instrumentation 15 1+2 OB
ELC056 Fundamentals of Digital Signal Processing 15 1+2 OB
DSC502 Human Factors in Systems Design 15 1+2 OB
MPC022 Materials Properties and Applications 15 1+2 OB
XXXXXX Options from the University Catalogue 30 1+2 OC

Options listed as oA will normally continue to be delivered throughout the Semester 1 examination period, while options listed as oB will normally be suspended during the Semester 1 examination period. No more than two oA modules should be chosen and only where they were not taken at Part B.  

The option oC allows a free choice of modules worth 30 credits from the University Catalogue. This choice should be restricted to modules from Part B, C or D level, subject to the overall requirement for the Part that at least 90 credits should be from Part C level or above. Choosing modules from Part D may result in examinations at the end of Semester 1. This free choice includes language modules from the University-wide Language Programme.  The total of 120 credits should be arranged as near to 60 credits per semester as possible. 

All optional module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.

 

4.4       Part D - Degree Modules

 

Code Title Weight Semester C/O
WSD030 Advanced Project 50 1+2 C
WSD034 Applying Management Theory 10 1+2 C
WSD506 Digital Signal Processing 15 1 OA
WSD509 Communication Networks 15 1 OA
WSD510 Personal Radio Communications 15 1 OA
WSD511 Information Theory and Coding 15 1 OA
WSD515 Communication Channels 15 1 OA
WSD530 Programming Multi-Many Core Systems 15 1 OA
WSD531 Sustainability and Energy Systems 15 1 OA
WSD533 Solar Power 15 1 OA
WSD534 Wind Power 1 15 1 OA
WSD535 Water Power 15 1 OA
WSD536 Biomass 1 15 1 OA
WSD568 Sensors and Actuators for Control 15 1 OA
WSD062 Understanding Complexity 15 2 OA
WSD508 Digital Signal Processing for Software Defined Radio 15 2 OA
WSD516 Telecommunications Network Security 15 2 OA
WSD517 Mobile Network Technologies 15 2 OA
WSD523 Antennas 15 2 OA
WSD525 Advanced Electronic Engineering Applications 15 2 OA
WSD526 Radio Frequency and Microwave Integrated Circuit Design 15 2 OA
WSD532 Integration of Renewables 15 2 OA
WSD538 Energy Storage 10 2 OA
WSD539 Solar Thermal Systems 10 2 OA
WSD540 Advanced Photovoltaics 10 2 OA
WSD541 Wind Power 2 10 2 OA
WSD032 Microwave Circuits Laboratory 15 1+2 OB
XXXXXX Options from the University Catalogue 30 1+2 OC

The optional modules listed oA are block taught in one week or two week long blocks, while those listed oB run over both semesters.

The option oC allows a free choice of modules worth 30 credits from the University Catalogue. This choice should be restricted to modules from Part C or D level, subject to the overall requirement for the Part that at least 90 credits should be from Part D level or above. This free choice includes language modules from the University-wide Language Programme.  The total of 120 credits should be arranged as near to 60 credits per semester as possible. 

All optional module choice is subject to availability, timetabling, student number restrictions and students having taken appropriate pre-requisite modules.

 

4.5  Part I

For candidates who are registered for the Diploma in Industrial Studies (DIS) or the Diploma in International Studies (DIntS),Part I will be between Parts B and C or between Parts C and D and will be in accordance with the provisions of Regulation XI and Regulation XX.

 

 

 

5. Criteria for Progression and Degree Award

5.1 Criteria for Programme Progression

 

Progression from Part A to Part B, Part B to Part C and from Part C to Part D will be subject to provisions set out in Regulation XX and in addition candidates must accumulate 120 credits and achieve an overall average of 55% in that part.

 

For candidates who commence study on the programme before October, 2016:

To progress from Part A to Part B, candidates must accumulate 100 credits from Part A, with no module mark less than 30% and obtain an average mark in Part A of at least 55%.

To progress from Part B to either Part C or Part I, (a period of professional training and/or study at an approved institution abroad, DIS or DIntS), candidates must accumulate 100 credits from Part B, with no module mark less than 30% and obtain an average mark in Part B of at least 55%.

To progress from Part C to either Part D or Part I, (a period of professional training and/or study at an approved institution abroad, DIS or DIntS), candidates must accumulate 100 credits from Part C, with no module mark less than 30% and obtain an average mark in Part C of at least 55%.

5.2 Degree award

To qualify for the award of the degree of Master of Engineering, candidates must accumulate 100 credits from Part D, with no module marks less than 30%. In addition, candidates should normally obtain a mark of at least 50% in all modules with codes of the form WSD5xx taken in Part D

 

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

A candidate's final degree classification will be determined on the basis of their performance in degree level Module Assessments at Parts B, C and D in accordance with the scheme set out in Regulation XX.  The average percentage marks for each Part will be combined in the ratio Part B 15: Part C 42.5: Part D 42.5, to determine the final Programme Mark.

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at º¬Ðß²ÝÊÓƵ, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF