Programme Specification
MEng (Hons) Materials Science and Engineering
Academic Year: 2018/19
This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.
This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.
This specification should be read in conjunction with:
- Reg. XX (Undergraduate Awards) (see University Regulations)
- Module Specifications
- Summary
- Aims
- Learning outcomes
- Structure
- Progression & weighting
Programme summary
Awarding body/institution | º¬Ðß²ÝÊÓƵ |
Teaching institution (if different) | |
Owning school/department | Department of Materials |
Details of accreditation by a professional/statutory body | |
Final award | MEng/ MEng+DIS/ MEng+DIntS |
Programme title | Materials Science and Engineering |
Programme code | MPUM01 |
Length of programme | The duration of the programme is eight semesters, or ten semesters if students undertake industrial training leading to the award of the Diploma in Industrial Studies, or study at a University abroad leading to the award of the Diploma in International Studies. These normally occur between Part B and Part C. |
UCAS code | J502, J503 |
Admissions criteria | MEng - http://www.lboro.ac.uk/j502 MEng+DIS/ MEng+DIntS - http://www.lboro.ac.uk/j503 |
Date at which the programme specification was published | Wed, 22 Aug 2018 16:02:58 BST |
1. Programme Aims
- To provide an honours degree programme in the field of Materials Science and Materials Engineering which satisfies the needs of industry for potential future leaders of outstanding ability with very strong academic, problem solving, business, interactive and interpersonal skills.
- To provide a broad range and in-depth education based on detailed knowledge in topics relevant to Materials Science and Engineering.
- To develop the students’ responsibility and competence in Materials Science and Engineering related testing, analysis and design and offer opportunities for industrial training.
- Provide open-ended, multi-disciplinary, individual project work and group work with increasing emphasis on commercial and industrial constraints and the ability to make progress independently.
- To encourage students to manage their own learning, communicate effectively using a range of methods and make effective use of primary source materials including technical literature and industrial standards.
- To develop the students’ commitment to life-long learning and enthusiasm for Materials Science and Engineering through the provision of an exciting, current and challenging programme informed by the department’s research activities and industrial input.
- To demonstrate the importance of professional engineering and highlight and encourage the route to professional registration.
2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:
- QAA Framework for Higher Education Qualifications
- QAA Benchmark Statements for Materials
3. Programme Learning Outcomes
3.1 Knowledge and Understanding
On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:
- Relevant mathematical and statistical methods and principles of materials science as applicable to materials science and engineering;
- Specialist science and engineering topics connected with the characterisation, testing, properties, processing, and applications of materials;
- The role of information technology and library resources in providing support for materials engineers and scientists;
- Science and engineering principles relevant to materials selection;
- The materials and engineering aspects of design;
- The professional and engineering responsibilities of materials scientists and engineers;
- A systematic understanding and critical awareness of current problems and/or new insights, much of which is at the forefront of materials science and engineering practice.
3.2 Skills and other attributes
a. Subject-specific cognitive skills:
On successful completion of this programme, students should be able to:
- Apply appropriate material and process selection procedures for the design of a component;
- Utilise materials science and engineering principles to develop new materials/processing routes for improved performance of engineering systems;
- Devise and test innovative solutions to materials-related problems, and where appropriate, propose new hypotheses;
- Select and apply appropriate IT tools to a variety of materials problems;
- Select materials from an environmentally appreciative viewpoint;
- Analyse materials aspects of bulk, raw materials as well as finished components;
- Evaluate numerical data and apply sophisticated mathematical methods to the analysis of materials science and engineering problems.
b. Subject-specific practical skills:
On successful completion of this programme, students should be able to:
- Use appropriate testing and analysis methods for the study of materials;
- Manipulate systems for the processing of a range of material types;
- Use appropriate computer software for design and modelling exercises to predict materials properties and behaviour;
- Evaluate and present experimental or modelling data in a format that shows originality in the application of knowledge, together with a practical understanding of how established techniques are used to create and interpret materials knowledge;
- Interpret and critique experimental results in terms of theoretical mechanisms and concepts;
- Create clear and well-structured technical reports in an appropriate format using technical language specific to materials science and engineering;
- Critically evaluate current materials science and engineering research;
- Demonstrate project management skills either individually or as part of a group.
c. Key transferable skills:
On successful completion of this programme, students should be able to:
- Apply constructive, creative, and structured approaches to complex problem solving;
- Exercise the independent learning ability required for continuing professional development;
- Make informed and responsible decisions in complex and unpredictable situations;
- Work effectively, both as part of a team and/or independently;
- Organise and manage time and resources effectively; for short-term and longer-term commitments;
- Possess skills needed to communicate effectively through a variety of media;
- Demonstrate a high level of numeracy, appropriate to the cognitive skills required.
4. Programme structure
Part A - All modules are compulsory.
Module code |
Title |
Credits |
Semester |
MPA201 |
Introductory Materials Science |
10 |
1 |
MPA202 |
Experimentation and Practical Skills |
20 |
1 and 2 |
MPA203 |
CAD and Engineering Drawing |
10 |
1 |
MPA204 |
Engineering Analysis and Modelling |
10 |
2 |
MPA205 |
Thermodynamics and Phase Equilibria |
10 |
1 |
MPA207 |
Mechanics for Materials 1 |
10 |
2 |
MPA210 |
Introduction to Product Design |
10 |
1 |
MAA101 |
Mathematics for Materials 1 |
10 |
1 |
MAA201 |
Mathematics for Materials 2 |
10 |
2 |
MPA321 |
Introduction to Materials Processing |
10 |
2 |
MPA322 |
Materials Applications |
10 |
2 |
Part B - 110 credits of compulsory modules, 10 credits of optional modules
Module code |
Title |
Credits |
Semester |
Compulsory/optional |
MAB101 |
Mathematics for Materials 3 |
10 |
1 |
C |
MPB208 |
Fracture Mechanics of Materials |
10 |
2 |
C |
MPB311 |
Materials Modelling |
10 |
1 |
C |
MPB210 |
Group Design Project |
10 |
1 |
C |
MAB206 |
Statistics |
10 |
2 |
C |
MPB209 |
Materials Characterisation |
10 |
2 |
C |
MPB321 |
Mechanics for Materials 2 |
10 |
2 |
C |
MPB312 |
Materials Processing |
30 |
1 and 2 |
C |
MPB313 |
Materials in Service |
10 |
1 |
C |
TTA107 |
Vehicle Design and Development |
10 |
1 |
O |
LAN--- |
Language module of appropriate level |
10 |
1 or 2 |
O |
MPB231 |
Biomaterials 1 |
10 |
2 |
O |
MPB322 |
Phase Transformations in Solids |
10 |
2 |
O |
TTB107 |
Vehicle Loading and Suspensions |
10 |
2 |
O |
Part I – Diploma in Industrial Studies and Diploma in International Studies Modules
Code |
Semester |
Title |
Modular Weight |
MPI001 |
1 and 2 |
Industrial Training Placement (DIS, non-credit bearing) |
120 |
MPI002 |
1 and 2 |
Overseas University Placement (DIntS, non-credit bearing |
120 |
Part C - 100 credits of compulsory modules, 20 credits of optional modules
Module code |
Title |
Credits |
Semester |
Compulsory/optional |
MPC312 |
Nano Materials |
10 |
1 |
C |
MPC311 |
Advanced Processing Methods |
10 |
1 |
C |
MPD110 |
Project |
40 |
1 and 2 |
C |
MPC114 |
Composite Materials |
10 |
2 |
C |
MPC312 |
Functional Materials |
10 |
2 |
C |
MPC111 |
Advanced Principles of Materials |
10 |
1 |
C |
MPC108 |
Surface Engineering |
10 |
1 |
C |
BSC522 |
Entrepreneurship and Innovation |
10 |
1 |
O |
LAN--- |
Language module of appropriate level |
10 |
1 or 2 |
O |
MPC120 |
Vehicle and Component Design |
30 |
1 and 2 |
O |
BSC144 |
Project Management |
10 |
2 |
O |
MPB123 |
Automotive Crash Protection |
10 |
1 |
O |
Part D - 90 credits of compulsory modules, 30 credits of optional modules
Module code |
Title |
Credits |
Semester |
Compulsory/optional |
MPP551 |
Advanced Characterisation Techniques |
15 |
1 |
C |
MPP556 |
Materials Modelling |
15 |
2 |
C |
MPD101 |
Group Design Project |
50 |
1 and 2 |
C |
MPD321 |
Energy Materials |
10 |
2 |
C |
MPD311 |
Crystallographic analysis of Materials |
10 |
3 |
O |
MPD105 |
Advanced Materials Dissertation |
10 |
1 |
O |
BSD523 |
Enterprise Technology |
10 |
1 |
O |
MPD322 |
Elasticity |
10 |
2 |
O |
MPD014 |
Polymer Engineering - Properties and Design |
10 |
1 |
O |
MPD102 |
Industrial Case Studies |
10 |
2 |
O |
5. Criteria for Progression and Degree Award
In order to progress from Part A to Part B, from Part B to part C and from Part C to part D and to be eligible for the award of an Honours degree, candidates must not only satisfy the minimum credit requirements set out in Regulation XX but also must gain credit (≥40%) in the modules MAA101 Mathematics for Materials 1 and MAA201 Mathematics for Materials 2 together with an overall average of 55% for Parts B, C and D.
6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification
Candidate’s final degree classification will be determined on the basis of their performance in degree level Module Assessments in Parts B, C, and D in accordance with the scheme set out in Regulation XX. The average percentages for each Part will be combined in the ratio Part B 20 : Part C 40 : Part D 40 to determine the overall average percentage mark.