º¬Ðß²ÝÊÓƵ
Leicestershire, UK
LE11 3TU
+44 (0)1509 222222
º¬Ðß²ÝÊÓƵ

Programme Specifications

Programme Specification

Curriculum Based Component of the EngD Research Programme in Manufacturing Engineering

Academic Year: 2014/15

This specification provides a concise summary of the main features of the programme and the learning outcomes that a typical student might reasonably be expected to achieve and demonstrate if full advantage is taken of the learning opportunities that are provided.

This specification applies to delivery of the programme in the Academic Year indicated above. Prospective students reviewing this information for a later year of study should be aware that these details are subject to change as outlined in our Terms and Conditions of Study.

This specification should be read in conjunction with:

  • Summary
  • Aims
  • Learning outcomes
  • Structure
  • Progression & weighting

Programme summary

Awarding body/institution º¬Ðß²ÝÊÓƵ
Teaching institution (if different) This is a collaborative programme led by Nottingham University in collaboration with º¬Ðß²ÝÊÓƵ and Birmingham University
Owning school/department Wolfson School of Mechanical and Manufacturing Engineering - pre-2016
Details of accreditation by a professional/statutory body
Final award EngD or exit award of MSc/ PGDip / PGCert
Programme title Manufacturing Engineering
Programme code To be confirmed
Length of programme The curriculum-based component of the EngD programme should normally be completed within the first 2 years of registration.
UCAS code
Admissions criteria

The EngD programme in Manufacturing Engineering at º¬Ðß²ÝÊÓƵ is open to graduates in any appropriate branch of engineering provided that they are articulate, well qualified and highly motivated. Graduates must demonstrate an appropriate background for their chosen research project. The usual EPSRC eligibility requirements apply.

The minimum entry qualification is a 2.1 Honours degree or equivalent. A lower qualification is acceptable if supplemented with an appropriate postgraduate (MSc) qualification and/or substantial industrial experience.

Date at which the programme specification was published Thu, 10 Jul 2014 10:36:37 BST

1. Programme Aims

To produce future research leaders to tackle the major national and international challenges over the next 15 years in implementing new high-value manufacturing technologies within UK industry by bridging the gap between basic research and technology commercialisation. Key technology themes for prioritisation (within the key automotive, aerospace and electronics sectors) have been identified in net shape processes, surface engineering, ultra low cost tooling, advanced material processing, assembly integration, intelligent automation and through-life digital engineering. 

To introduce students to key engineering topics relevant to high-value manufacturing technologies. 

To prepare graduates who are capable of operating in multi-disciplinary teams and who have the skills to analyse the overall economic context of their projects and to be aware of the social and ethical implications.  

To develop students’ understanding in a particular specific area of interest by undertaking a research based project in association with appropriate university research groups and in conjunction with industry.

2. Relevant subject benchmark statements and other external reference points used to inform programme outcomes:

Framework for Higher Education Qualifications (FHEQ);

Engineering subject benchmark statement;

University Learning and Teaching Strategy;

EC (UK)  Specification for Professional Engineering Competence (UK-SPEC);

Industrial Advisory Committee for the Engineering Doctorate Centre;

Good Practice in Developing Collaborative Provision at Nottingham University

Collaborative Provision Policy at Birmingham University

Policy on Collaborative Provision at º¬Ðß²ÝÊÓƵ

(http://www.as.bham.ac.uk/legislation/docs/POL_Collaborative_Provision.pdf, http://www.nottingham.ac.uk/academicservices/qualitymanual/goodpracticeguide/goodpracticeindevelopingcollaborativeprovision.aspx, http://www.lboro.ac.uk/admin/ar/policy/aqp/appendix/22/index.htm).

3. Programme Learning Outcomes

3.1 Knowledge and Understanding

On successful completion of this programme, students should be able to demonstrate knowledge and understanding of:

K1        The fundamental challenges and capabilities in high-value, advanced manufacturing engineering 

K2        The theoretical background of the specialist area(s) of manufacturing relevant to the research undertaken 

K3        The application of advanced technical skills, allied with management and professional skills in an industrial context so as to contribute to the development of new techniques, ideas or approaches 

K4        The techniques and practice of management in a manufacturing business environment 

K5        The social and economic, environmental and regulatory impact of advanced technologies

3.2 Skills and other attributes

a. Subject-specific cognitive skills:

On successful completion of this programme, students should be able to:

C1        Understand a research problem and develop an appropriate research methodology 

C2        Critically appreciate and synthesise information from a broad range of sources to aid decision making for system, process or product improvement 

C3        Select and apply appropriate analytical, manufacturing engineering principles and methods to model and analyse problems in advanced manufacturing 

C4        Source and critically evaluate information from academic papers, patents, technical manuals and industrial sources 

C5        Plan investigations both in the field and in laboratory situations

b. Subject-specific practical skills:

On successful completion of the programme, students should be able to:

P1        Develop knowledge of appropriate research and professional skills 

P2        Select and apply appropriate methods and techniques to solve problems 

P3        Prepare and deliver technical presentations individually or within a professional team 

P4        Plan, schedule, project manage and execute in-depth investigations individually or within a team 

P5        Employ a range of computer-based packages associated with CAD, CAM, IT, project planning and control of manufacturing 

P6        Use relevant specialist manufacturing process equipment

c. Key transferable skills:

On successful completion of this programme, students should be able to:

T1         Generate new ideas and develop and evaluate a range of solutions

T2         Adopt a critical approach for research investigation

T3         Enhance written and verbal communication skills through reports and presentations and clearly communicate research conclusions

T4         Work effectively and independently within multidisciplinary teams 

T5         Enhance the ability to plan and manage projects effectively 

T6         Make appropriate use of specialist software packages

4. Programme structure

4.1  Introduction

All Research Engineers who are registered on the Engineering Doctorate (EngD) programme are required to register for and satisfy the regulations for the curriculum-based component of the programme. The purpose of the taught modules is to develop knowledge and understanding of a number of technical, business and management subjects as a pre-requisite to the research element of the EngD award.

The curriculum-based component of the programme will normally require a total modular weight of 180 (including the Postgraduate Research Dissertation at 60 credits) taken from the range of postgraduate modules offered by the three Universities within the Manufacturing Engineering Doctoral Centre (MEDC) (Nottingham (N), º¬Ðß²ÝÊÓƵ (L) and Birmingham (B)).

Candidates who have previously studied appropriate Level 7 (MSc) material, already possess an appropriate MSc or have appropriate industrial experience may be allowed in exceptional circumstances to reduce the curriculum-based component of the programme. Eligibility for a reduced curriculum-based component will be decided on an individual basis by the MEDC Management Group.

All candidates shall register at the beginning of their programme and subsequently at the beginning of each academic year for the modules which they are taking in that year, subject to their satisfactory progress in research and the extension of their registration for the Degree of EngD in accordance with the Regulations for Higher Degrees by Research. Candidates are not eligible to register for modules whilst they remain in debt to the university.

4.2  Content

The programme has a number of special features as a consequence of the multi-university nature of the MEDC. The Research Engineers (REs) will register at one of the three universities, but in order to maintain the integrity of the Centre all REs in each cohort will attend an initial full-time core training period of one semester duration. The core training semester will also include compulsory but non-assessed activities within the induction period.

The modular credits taken in the core training period will comprise 65 credits of compulsory modules offered by the three universities. The total taught element credits will be made up to 120 by specialist training modules which can be taken at any of the partner universities. There are three themes within the specialist modules, and REs are normally expected to take a minimum of 10 credits from each of these three themes. However to ensure that the correct number of credits are achieved the REs have to ensure that they take at least one of the º¬Ðß²ÝÊÓƵ based 15 credit optional modules.

Specialist modules can be undertaken at any preferred time during the programme  subject to local prerequisite requirements.

The selection of elective modules should be discussed and agreed with the Research Engineer’s supervisor(s) and the appropriate Programme Director.

4.2.1   Core Modules

 

Year 1 - (total modular weight 65)

 

Code

Title

Modular Weight

MMP900

Satisfying the Customer

20

G54RPS

Research and Professional Skills (N)

10

N14T15

Innovation and Technology Transfer (N)

10

TBC

Materials for Manufacturing (B)

10

MMP600

Manufacturing Processes and Automation (L)

15

 

4.2.2   Elective Modules - (total modular weight 55)

Optional modules may be chosen from the module catalogues of the universities of Nottingham, º¬Ðß²ÝÊÓƵ and Birmingham. All module choice is subject to the approval of the Programme Director and the delivering institution(s) and/or department(s). Choice should normally be restricted to postgraduate modules (level 7) and should normally be chosen from the selection listed below. Most modules are delivered either as block-taught modules lasting 3 to 5 days or in Distance Learning format (indicated by § after the module code).  

The research engineer is responsible for ensuring that all aspects of optional module choice can be incorporated into their individual timetable. Choice of optional modules is significantly affected by timetabling constraints and is also subject to availability, prerequisite, preclusive and student number restrictions. Any difficulties arising from optional module choice will not normally be considered as the basis of a claim for impaired performance.

Engineers must select a minimum 10 credits from each of the Management and Professional Development and Contextual skills groups and a minimum of 20 credits from the Advanced Technical skills group. There is no restriction on numbers of credits selected from a specific university but at least one 15 credit module from º¬Ðß²ÝÊÓƵ must be taken to ensure total credits of 120. The choice of electives will be made in discussion with the research project supervisor and training manager to provide sufficient background material for the research theme.  

The majority of elective modules are delivered in one-week intensive blocks. The modules indicated with an * are taught weekly during a semester.

 

Management & Professional Development Skills

 

Module Title

Module Code

Credits

Semester

Offered by

Process Excellence/Lean Thinking & Customer Care

N14R09

10

Summer

N

Supply Chain/Logistics Strategy & Performance Measurement

N14R06

10

Spring

N

Product Lifecycle Management

MMP330

15

Aut

L

Contextual Skills

 

Sustainable Development: The Engineering Context

MMP409

15

Aut

L

Exploring Science & Technology in Society *

L34619

10

Aut

N

Advanced Technical Skills

Additive Manufacturing

MMP637

15

Spring

L

Sustainable Product Design

MMP437

15

Spring

L

Aluminium Alloys

04 21930

 

Summer

B

Intermetallics

04 17683

10

Summer

B

Physical Metallurgy of Titanium and Nickel

04 21929

10

Aut

B

Polymer Science and Soft Matter

 

04 18515

10

Spring

B

Advanced Tooling & Fixturing*

TBC

10

Spring

N

Automated Assembly*

TBC

10

Spring

N

 

4.2.3   Project and Research Training - (total modular weight 60)

Code

Title

Modular Weight

MMP570

Research Project Portfolio: Part 1 (L)

30

MMP571

Research Project Portfolio: Part 2 (L)

30

The Research Project Portfolio: Part 1 should normally be completed in year 1, and the Research Project Portfolio: Part 2 should normally be completed in year 2.

These Project and Research Training modules can be considered as the Masters Project for purposes of the award of MSc.

Three copies of the Research Project Portfolio (Parts 1 and 2) must be lodged with the Programme Director on or before the second anniversary of registration.

5. Criteria for Progression and Degree Award

5.1   Candidates who have completed part or all of the curriculum based element of their programme but who subsequently do not complete the requirements for the award of EngD may be eligible for the for the award of Postgraduate Certificate (PGCert), Postgraduate Diploma (PGDip) or Master of Science (MSc). The credit for these awards must have been accumulated as part of the curriculum-based component of the programme. Candidates who have, because of their previous study or experience, been allowed to reduce the curriculum-based component of the programme may not qualify for an award. The normal eligibility of candidates on the Programme for these awards and for distinction where appropriate, will be in accordance with Regulation XXI.

5.2 The PGCert, PGDip or Degree of MSc shall be awarded in Manufacturing Engineering.

5.3   The º¬Ðß²ÝÊÓƵ-based curriculum-based component of the EngD programme, including the Project and Research Training components, shall be assessed in accordance with the procedures set out in Regulation XXI.

5.4   Provision will be made in accordance with Regulation XXI for candidates who have the right of re-examination in º¬Ðß²ÝÊÓƵ modules to be reassessed, where suitable modules are available, during the University's Special Assessment Period.

5.5   Candidates will be eligible to progress on the EngD programme when they have accumulated 180 credits from the curriculum-based component within the period of time specified in paragraph 1.3 of these Regulations, except where exemption has been granted in accordance with paragraph 1.4 of these Regulations.

6. Relative Weighting of Parts of the Programme for the Purposes of Final Degree Classification

Related links

Prospective students

Image of a University homepage screengrab

Information on studying at º¬Ðß²ÝÊÓƵ, including course information, facilities, and student experience.

Find out more »

Decorative

How to print a Programme Specification

1. Select programme specification
2. Save specification as a PDF
3. Print PDF