Sir Nevill Mott Lecture Series

In 1995 Sir Nevill Mott visited the Department of Physics and presented a lecture entitled "65 Years in Physics". The lecture was a great success, and Sir Nevill kindly permitted his name to be associated with an annual lecture series to be given by distinguished invited speakers.

The 2024 lecture

The 2024 Sir Nevill Mott lecture will be given by Professor Franco Nori, Chief Scientist at the Theoretical Quantum Physics Laboratory, RIKEN, Japan.

The topic is: Superconducting quantum micro-electronics using artificial atoms, for future quantum optics, opto-electronics, and quantum information.

 

Past lectures

2023 lecture: Professor Laura Greene: The Dark Energy of Quantum Materials

The 2023 Sir Nevill Mott lecture was given by Professor Laura Greene and entitled The Dark Energy of Quantum Materials. Professor Laura Greene is the Marie Krafft Professor of Physics at Florida State University and Chief Scientist at the National High Magnetic Field Laboratory.

Watch lecture on YouTube

2022 lecture: Professor Leon Chua: Memristors are the elan vital of Brain-like Machines

Our 2022 lecture "Memristors are the elan vital of Brain-like Machines" was presented by Professor Leon Chua from the University of California, Berkeley.

2020 lecture: Dr Alan Baratz: Practical Quantum Computing

23 March 2020

2019 lecture: Professor Stanley Williams: Finding the Mott Memristor

On Tuesday 8 May Prof. Stanley Williams presented the 2019 Sir Nevill Mott Annual Lecture.

Title: Finding the Mott Memristor

2018 lecture: Professor Michael Kosterlitz, Nobel laureate: Topological Defects and Phase Transitions - A Random Walk to the Nobel Prize

On Tuesday 8 May Prof. Michael Kosterlitz, from Brown University, presented the 2018 Sir Nevill Mott Annual Lecture.

Title: Topological Defects and Phase Transitions - A Random Walk to the Nobel Prize

Abstract: This talk is about my path to the Nobel Prize and reviews some of the applications of topology and topological defects in phase transitions in two-dimensional systems for which Kosterlitz and Thouless split half the 2016 Physics Nobel Prize. The theoretical predictions and experimental verification in two dimensional superfluids, superconductors and crystals will be reviewed because they provide very convincing quantitative agreement with topological defect theories.

2017 lecture: Professor Zahid Hasan: New Topological States of Matter: Material Platforms for Novel Fermions

On Thursday 25 May Prof. Zahid Hasan, from Princeton University & Lawrence Berkeley National Laboratory, presented the 2017 Sir Nevill Mott Annual Lecture.

Title: New Topological States of Matter: Material Platforms for Novel Fermions

Abstract: Electrons in solids organize in ways to give rise to distinct phases of matter such as insulators, metals, magnets or superconductors. In the last ten years or so, it has become increasingly clear that in addition to the symmetry-based classification of matter, topological consideration of electronic wavefunctions plays a key role in determining distinct phases of matter [for an introduction, see, Hasan & Kane, Reviews of Modern Physics 82, 3045 (2010)].

In this talk, I introduce these concepts in the context of their experimental realizations in real materials leading to recent developments. As an example, I present how tuning a 3D topological insulator whose surface hosts an unpaired Dirac fermion can give rise to topological superconductors with helical Cooper pairing leading to novel Majorana platforms, Weyl fermion semimetals with “fractional” surface Fermi surfaces, and other topological nodal states of matter.

These topological materials harbor many novel properties that may lead to the development of next generation quantum technologies accelerating the second quantum revolution.

2016 lecture: Professor Yuri Pashkin: Why superconducting circuits are good for quantum technologies

On Wednesday 16 March, Prof. Yuri Pashkin, from Lancaster University, will present the 2016 Sir Nevill Mott Annual Lecture.

Title: Why superconducting circuits are good for quantum technologies 

Abstract: Development of quantum technologies dictates the necessity of finding a proper physical system that could satisfy stringent requirements on quantum coherence of individual components, their scalability, good controllability of device parameters, ease of fabrication, etc.  

Superconducting nanoelectronic devices are among the most promising for many applications in which quantum behaviour becomes important and may satisfy all the requirements imposed. Superconductors possess two properties that are crucial prerequisites for the observation of quantum effects:

(i) they can carry dc current with zero resistance and (ii)  have a gap in the energy spectrum. While the first property ensures dissipationless charge transport in the material, the second property protects charge carriers, the Cooper pairs, from low-energy excitations. This gives a possibility to prepare, manipulate and measure quantum states in superconducting circuits and use them for practical purposes. Also, the fabrication process for superconducting electronics is well established.

In my talk I will give a brief introduction of the field and then focus on two types of circuits that are currently being intensively studied for applications in quantum information processing and quantum metrology. Besides explaining the physics of the superconducting devices, I will also pay attention to some technical issues involved. In the end, I will describe Lancaster efforts in quantum technologies.

2015 lecture: Professor Sir David Wallace: High Performance Computing

On the 11 March 2015, Prof. Sir David Wallace, presented the twentieth Sir Nevill Mott Annual Lecture.

Title: High Performance Computing 

Abstract: The technology of High Performance Computing (HPC) is crucially underpinned by physics and mathematics. In turn HPC is a vital tool for research across the sciences, and for innovation. At the heart of modern HPC is our ability to exploit massively parallel systems, which can consume MWatts of power and deliver billions of calculations per watt. This talk will review the evolution of HPC systems and give examples of the remarkable applications in science which they now support.

Mott 2015 PowerPoint Presentation

Sir David Wallace's lecture poster (pdf)

2014 lecture: Professor Sir John Pendry: Metamaterials and the Science of Invisibility

‌In 2014, Prof. Sir John Pendry, presented the nineteenth Sir Nevill Mott Annual Lecture.

Title: Metamaterials and the Science of Invisibility 

Abstract: Electromagnetism encompasses much of modern technology. Its influence rests on our ability to deploy materials that can control the component electric and magnetic fields. A new class of materials has created some extraordinary possibilities such as a negative refractive index, and lenses whose resolution is limited only by the precision with which we can manufacture them. Cloaks have been designed and built that hide objects within them, but remain completely invisible to external observers. The new materials, named metamaterials, have properties determined as much by their internal physical structure as by their chemical composition and the radical new properties to which they give access promise to transform our ability to control much of the electromagnetic spectrum.

Mott 2014 Lecture

2013 lecture: Professor Laurence Eaves: Strong magnetic and electric fields for manipulating quantum states and gravity

In 2013, Prof. Laurence Eaves, presented the eighteenth Sir Nevill Mott Annual Lecture.

Title: Strong Magnetic and Electric Fields for Manipulating Quantum States and Gravity

Abstract: Despite its small mass, an electron carries a large electric charge. This unique property allows the physicist to manipulate the motion of electrons by applying a magnetic or electric field. This talk will describe how we can use high magnetic fields to levitate solid matter against the force of gravity, thus allowing us to study the dynamics of rapidly-spinning water droplets (relevant to the physics of black holes!) and the way in which conditions of zero effective gravity modify the behaviour of living organisms. We will also examine how we can use high fields to image and manipulate the quantum states of bound electrons in semiconductor materials and devices.

2012 lecture: Sir John Houghton, Nobel laureate: Are human activities causing climate change and how damaging will the impacts be?

On 14 March 2012, Sir John Houghton, presented the seventeenth Sir Nevill Mott Annual Lecture.

Title: Are human activities causing climate change and how damaging will the impacts be?‌

Abstract: From the burning of fossil fuels, coal, oil and gas, over 30 billion tonnes a year of carbon dioxide are emitted into the atmosphere. This is increasing the 'greenhouse effect' a scientific principle known forover 200 years, resulting in increased average temperature at the earth's surface. Intense scientific study of all parts of the climate system over the past 30 years has provided strong evidence of a resulting rate of change of climate greater than for many thousands of years bringing serious impacts on human communities and ecosystems. Many co-benefits will accrue from actions taken to reverse the current trends. The need for urgency is inescapable.

Mott Lecture 2012

2011 lecture: Professor Victor Petrashov: Metal: Box of Surprises

On Wednesday 16th March 2011, Prof. Victor Petrashov, Department of Physics, from Royal Hollway, University of London, presented the sixteenth Sir Nevill Mott Annual Lecture.

Title: Metal: A Box of Suprises

Abstract: The general properties of metals are well known, but at the nanoscale they show spectacular new phenomena that provide many opportunities for the exploration of fundamental physics and for potential practical applications. These properties are rooted in quantum mechanics, providing insights and new physics fitting to the lifework of Sir Nevill Mott.

2011 Mott Lecture

Sir John Pendry's lecture poster (pdf)

2010 lecture: Professor Brian Josephson, Nobel laureate: Which way for Physics?

On Thursday 16 March 2010, Prof. Brian Josephson FRS, from University of Cambridge presented the fifteenth Sir Nevill Mott Annual Lecture.

Title: Which Way for Physics?

Abstract: Professor Brian Josephson FRS, Emeritus Professor at Cambridge, spoke this year to a large audience. He had received the Nobel Prize in 1973 for the prediction (made while a research student) of supercurrent tunnelling through a barrier (the eponymous Josephson effect). His interests subsequently took a radically different turn, and he directs the Mind Matter Unification Project. His talk, "Which Way for Physics?", stressed the issues related to reductionism of the modern science such as incompatibility of Einsten Theory of Relativity and Quantum Mechanics. He has cited the original Phil Andersen’s paper: “More is different” and in this connection noted the importance of emergent phenomena in a broader range of many-body systems including social, information and conceptual networks. He told us that in general these systems, and especially conceptual networks where nodes migrate, decompose and evolve, must be treated as Complex Systems, where the cooperation between units creates a new quality and leads to a formation of new phenomena such as life. He proposed a hypothesis that life is some ultrastable phenomenon that originated as emergent property of some network evolution, where both nodes and coupling between them are changing, and resulted in a new quality. He has put many parallels to this idea illustrating it with the known examples of the network evolutions. In particular, he gave good examples of the jumpy evolution of language networks.

2009 lecture: Professor Sir Roger Penrose, Nobel laureate: Gravity and the Foundations of Quantum Mechanics

On Wednesday 11 March, Prof. Sir Roger Penrose, from the University of Oxford presented the fourteenth Sir Nevill Mott Annual Lecture.

Title: Gravity and the Foundations of Quantum Mechanics

Abstract: In a wide-ranging and thought-provoking tour through some of the deepest puzzles in physics, he presented his ideas on the measurement problem in quantum mechanics and how it may be resolved through the action of matter on space-time, on the second law of thermodynamics and its relation to cosmological artrow of time, on information and black holes and other such matters.

2008 lecture: Professor Raymond Goldstein: Physics and the Evolution of Biological Complexity

On Wednesday 12 March 2008, Prof. Raymond E Goldstein, from University of Cambridge presented the thirteenth Sir Nevill Mott Annual Lecture.

Title: Physics and the Evolution of Biological Complexity

Abstract: One of the most challenging and interesting problems in evolutionary biology is the emergence of multicellular organisms from unicellular individuals. The accompanying differentiation and specialization implies both costs and benefits. Not surprisingly for microscopic life in water, many of the issues surrounding these transitions involve the physics of diffusion and mixing. In this talk Professor Goldstein will discuss recent experimental and theoretical approaches to the quantitative understanding of this fascinating problem, using techniques from physics, cell biology, fluid mechanics and applied mathematics to help answer the basic question: What is the advantage of increasing size?

2006 lecture: Professor Sir Michael Berry: Making Light of Mathematics

On Thursday 16 March 2006, Prof. Sir Michael Berry, FRS, from Bristol University presented the twelfth Sir Nevill Mott Annual Lecture.

Title: Making Light of Mathematics

Abstract: ‘Many mathematical phenomena’ find application and sometimes spectacular physical illustration in the physics of light. Concepts such as fractals, catastrophe theory, knots, infinity, zero, and even when 1+1 fails to equal 2, are needed to understand rainbows, twinkling starlight, sparkling seas, oriental magic mirrors and simple experiments on interference, polarization and focusing. The lecture will be based on pictures; the level is nontechnical but intellectual.

2005 lecture: Professor Emmanuel Rashba: Impact of Nevill Mott’s Research on the Development of Solid State Physics: A Personal Perspective

On Wednesday 16 March 2005, Prof. Emmanuel I Rashba, from Harvard University presented the eleventh Sir Nevill Mott Annual Lecture.

Title: Impact of Nevill Mott's Research on the Development of Solid State Physics: A Personal Persepctive

Abstract: During a long epoch that lasted for half a century, the research of Sir Nevill Mott made a deep impact on the development of solid state physics. His interests embraced most of the basic areas of this field, and his pioneering ideas initiated new avenues of research. Taking several topics as specific examples, I will illustrate how Mott’s ideas, through his papers and books, influenced scientific work in the former Soviet Union, including my personal research. In conclusion, I will discuss some recent developments in spintronics in which Mott’s seminal paper on screw scattering and his two-current model play an outstanding role.

 

2004 lecture: Professor Arndt Simon: A Glimpse into Sub-Nanostructures

On Wednesday 5 May 2005, Prof. Arndt Simon, from Germany, presented the tenth Sir Nevill Mott Annual Lecture.

Title: A Glimpse into Sub-Nanostructures

Abstract: For many years the term "Microstructure Research" addressed research at the cutting edge, in our days being replaced by the term "Nanostructures Research". It is time to think about the next step, which is the step into sub-nanostructures. This area could be entered top-down; however, the bottom-up direction seems more feasible. The necessary term has been coined already — supramolecular chemistry — which carries the interest of chemists from molecular structures to assemblies of molecules and their properties.

Quasi-molecular metal clusters provide versatile units in a subnano-scale construction kit. Depending on the nature of the atoms, these clusters may consist of a core of metal atoms surrounded by non-metal atoms, and their arrangement in a solid results in a regular “dispersion” of little pieces of metal in a dielectric matrix. At the other extreme are clusters which accumulate negatively charged non-metal atoms inside beneath a metallic skin. They condense into a solid which represents a “dispersion” of little pieces of salt in a metal. Such structures relate to quantum dot and antiquantum dot arrays, but two orders of magnitude smaller than those produced by current artificial structuring.

2003 lecture: Professor Alexei Abrikosov, Nobel laureate: Superconductivity: History and Current Status

On Wednesday 7 May 2003, Prof. Alexei A Abrikosov, presented the ninth Sir Nevill Mott Annual Lecture.

Title: Superconductivity: History and Current Status

Abstract: A brief account is given of the developments in superconductivity since its discovery in 1911. Relevant theoretical and experimental advances are described including the Peierls and the London theory. Experimental entities such as the critical temperature, critical magnetic field, Meissner effect and penetration depth of an external magnetic field into a superconductor are examined. Important experimental progress has been made with the discovery of superfluidity, the isotope effect and the discovery of the phonon mediated attraction between electrons.

These developments have led to the Bardeen-Cooper-Schrieffer theory of superconductivity with the Ginsburg-Landau theory as the limiting case. Since then the applications of superconductors, in particular with the Josephson effect in SQUIDs, and more recently with the advances in high temperature superconductivity, have made significant inroads towards applications in industry and research. This progress is briefly reviewed.

Prof. Abrikosov has worked in the area of superconductivity for almost 50 years. During this time he has been at the forefront of research in this field and has made significant contributions including the prediction of the existence of type-II superconductors and also of magnetic flux line lattices.

This review is a personal account of the historic developments in this field of physics from a prominent physicist who has, for the major part of his academic career, worked in the former Soviet Union. This talk offers a unique opportunity to glimpse at the life and the work of a very prominent scientist with a distinctive perspective in a very active area of solid state physics.

2002 lecture: Professor Philip Anderson, Nobel laureate: History of the Mott Metal - Insulator Transition

On Friday 1 November 2002, Prof. Philip W.Anderson, Nobel Prize winner, presented the eighth Sir Nevill Mott Annual Lecture.

Title: History of the Mott Metal-Insulator Transition

Abstract: The occurrence of solids in the form of either metals or insulators has been a very fundamental observation in physics, but one which has challenged theory. While in insulators electrons are essentially localised on atoms, in a metal electrons can move around freely through the solid. The question arises as to what mechanism, on an atomic scale, may be responsible for this change in electron behaviour. Such a question was made particularly relevant with the experimental observation that substances exist for which a change of external parameters, such as temperature, will induce a transition from a metal to an insulator. One such example is V2O3 for which the electrical resistivity changes by a factor of 107 at the metal-insulator phase transition! This talk will address the physics of the metal insulator phase transition from a historic perspective. Professor Anderson and Sir Nevill Mott have both made very important contributions to this area of physics, which have been recognised with the award of the Nobel Prize in 1977.

2001 lecture: Sir Robert May: Science Advice and Public Confidence in a Complex World

On Wednesday 7 March 2001, Sir Robert May FRS, presented the seventh Sir Nevill Mott Annual Lecture.

Title: Science Advice and Public Confidence in a Complex World

Abstract: The lecture was held on Wednesday 7 March 2001.The speaker was Sir Robert May FRS, former Chief Scientific Adviser to the Government and Head of the Office of Science and Technology, now President of the Royal Society. 

2000 lecture: Professor John Enderby: Liquids - Present and Future Aspects

Awaiting text

1999 lecture: Sir David Davies: Synthetic Aperture Radar

Awaiting text

1998 lecture: Sir Peter Williams: Science into the 21st century

Awaiting text

1997 lecture: Sir Peter Mansfield: The use of MRI to investigate porous structures

Awaiting text

1996 lecture: Lord Phillips of Ellesmere: Physics & Molecular Biology

Awaiting text

1995 lecture: Sir Nevill Mott, Nobel laureate: 65 Years in Physics

A photography of Sir David Wallace

In 1995, Sir Nevill Mott allowed us to create an annual lecture series to be given by invited speakers.

Title: 65 Years in Physics

Abstract: In 1995, Sir Nevill Mott visited the Department of Physics and presented a lecture entitled "65 Years in Physics". The lecture was a great success, and Sir Nevill kindly permitted his name to be associated with an annual lecture series to be given by distinguished invited speakers.