Researchers wanted to replicate the basic mechanisms behind some of the most highly organised patterns seen in the animal kingdom such as huge swirling starling murmurations and immense twisting herring shoals.
Groups like these, consisting in many cases of hundreds of thousands of individual animals, appear to move as if compelled by a collective intelligence, said lead author Dr Marco Mazza, a Lecturer in Applied Mathematics, at º¬Ðß²ÝÊÓƵ.
But in reality, could be down to basic survival instincts.
“The beauty of nature has inspired artists, philosophers, and scientists for as long as we can remember,” said Dr Mazza.
“The seemingly effortless harmony in the collective motion of migrating birds, or schooling fish defies explanations.
“Our aim was to obtain a minimal model for general features of self-organization in the natural, or animal, world.
“The principle of ‘maximize your options’ – a simple, almost trivial ambition – produces complex organizational patterns, known as the Goldstone mode, a concept familiar to physicists working on inanimate matter.
“This Goldstone mode is, in simple terms, how a giant flock of starlings can suddenly change direction collectively as if there were a central brain.
“But in reality, there is no core intelligence driving the behaviour.”